

Introduction

- The relative positioning of a pair of transmitting and receiving antennas has a significant effect on the received signal strength.
- Antenna position, orientation, and polarization affect the strength of the received signal.
- There is a reduction in power density of an electromagnetic wave as it propagates through space.
- The way these factors change the signal strength can be challenging for students to understand and to visualize from mathematical equations and static illustrations alone.
- This project aims to create an interactive demonstration that shows these effects in real time with easily manipulatable antennas and intuitive graphical interface.

Software Development

- A virtual network computer (VNC) connection is us allow for larger display for class demonstrations [4 (pictured left)
- The Software driving the ADALM-Pluto SDR is GNI Radio (flowgraph pictured right)
- The program transmits a tone at a user-defined frequency.
- That signal is then received by the receiving anter and the relative signal strength can be seen based polarization, position, orientation, and frequency.

Hardware and Software Development of Antenna Characteristics Demonstration Module

Trevor Wolf, Kobe Prior, and Atef Elsherbeni

tjwolf@mines.edu, kdprior@mines.edu, aelsherb@mines.edu

Electrical Engineering Department Colorado School of Mines, Golden, CO 80401, USA

- receives signal)
- Raspberry pi 4
- 20,000 mAh battery pack • 3D printed stand
- First Iteration:

	Conclusion and Future Worl
sed to 4]. U	 This second iteration is a proof-of-concept hardware unit, minimizing software setup Immediate next steps for this project are to attempt to adapt the software setup to it compatible with Windows and Mac operating systems. Future version would not need remote consoftware to access the Raspberry Pi and run on the teaching laptop directly. This would eliminate the need for the Pi battery, slimming the unit down to just the and the pair of antennas.
cy Sink Amplitude	Acknowledgements
PlutoSDR Sink IIO context URI: ip:local LO Frequency: 926M Sample Rate: 2.048M RF Bandwidth: 20M Buffer size: 327.68k Cyclic: Tue Attenuation TX1 (dB): 0 Filter: Filter Auto: True	 Robert Jones – for GNURadio Troublesh and providing other technical help Darren McSweeney – for assistance in fir bardware for the project

Hardware Development

The final developed module consists of: • ADALM-Pluto SDR (Transmits and

• All in one touch screen display

• A HackRF SDR transmits AM audio and an RTL-SDR receives the signal • During the first demonstration it was

difficult to identify the received signal gain because the amplitude of the

transmitted audio signals varied with time

[1] GNU Radio Wiki Editors, "Simulation example: AM transmitter and receiver - GNU Radio," GNU Radio. https://wiki.gnuradio.org/index.php?title=Simulation example: AM transmitter and receiver (accessed Oct. 4, 2022). to make [2] GNU Radio Wiki Editors, "Signal Source - GNU Radio,"GNU Radio. desktop https://wiki.gnuradio.org/index.php/Signal Source would (accessed Oct. 5, 2022). and the SDR [3] S. Katz, "Using GNU Radio Companion: Tutorial 3. Receiving AM Signals," publisher: California State University, Northridge. [Online]. Available: http://www.csun.edu/ skatz/katzpage/sdr project/sdr/grc tutorial3.pdf nooting [4] Gus, "Raspberry Pi Screen Sharing with TightVnc," PiMyLifeUp. https://pimylifeup.com/raspberry-pi-screennding sharing/ (accessed Feb. 3, 2023).